
2025/06/15 13:36 (0 seconds ago) 1/7 This page is deprecated

Orx Learning - https://www.orx-project.org/wiki/

This page is deprecated

Using orxhub

Summary

In this tutorial, we're going to start a fresh project using OrxPM, the Orx Package Management tool.
We're going to install packages from orxhub(the official OrxPM repository), handle merge conflicts,
then again install new packages later on in the project to experience how OrxPM works during the
lifetime of a project. The tutorial gives a detailed tour of using OrxPM, but all it takes to start using
OrxPM(and the packages on it) is the following:

Copy orxpm.sh into an empty folder
Create a file named orx_packages containing names of desired packages on each line. (For an
empty project, just write minimal in orx_packages.
Run: (Note for Windows Users: Run these commands in git bash shell.)

git init
./orxpm.sh

Create a folder named .build
Inside that folder, run:

cmake ../src

And the project files for your platform are generated in the .build folder.

Starting a New Project

All it takes to start an OrxPM powered project is a working git installation and the orxpm.sh script. You
can use the following steps to start a new project in any git repository, but to set you up for a
merge conflict (which we'll learn how to deal with) we're going to start by cloning the official orxhub
repository (I keep referring to it as the “official” repository since anyone can easily fork their own.).
So, in any folder of your liking run the following command: (Note for Windows users: The CLI
commands given in this tutorial depend on the BASH shell, which is provided by your git installation.
So, please run them under bash provided by git.)

git clone https://github.com/orx/orxhub.git tutorial_project

This creates a new folder with the name tutorial_project. Now let's go into that folder and see
what there is inside:

cd tutorial_project
ls

https://github.com/orx/orxhub
https://github.com/orx/orxhub/blob/master/orxpm.sh
https://github.com/orx/orxhub/blob/master/orxpm.sh
https://github.com/orx/orxhub
https://github.com/orx/orxhub

Last update: 2024/06/01 12:34 (13
months ago) en:tutorials:projects:orxhub_user https://www.orx-project.org/wiki/en/tutorials/projects/orxhub_user

https://www.orx-project.org/wiki/ Printed on 2025/06/15 13:36 (0 seconds ago)

This will show README.md and orxpm.sh. Normally, all you need to start using OrxPM in an existing
git repository is to copy orxpm.sh into its root.

In order to install packages from OrxPM, one lists the names of those packages in a file named
orx_packages and runs orxpm.sh:

In the repo root: (Note that this will result in an intentional merge conflict, so don't panic)

echo minimal > orx_packages
./orxpm.sh # merge conflict expected here

These commands will install the minimal package from orxhub. This package contains the template
for an empty Orx project that can compile against multiple platforms and it's the base of all packages.

As expected, a merge conflict occurred on the README.md file, as the minimal package is also trying
to bring a README.md file. OrxPM works by merging the requested packages into your repository and
those packages and the minimal template is designed to minimize any unnecessary merge conflicts.
The entire project structure is designed so that the packages can work together without stepping on
each others' toes, but still, an occasional merge conflict is possible and there's no need to panic, we
can resolve the conflict and use the packages.

If we now inspect README.md we'll see that git has marked the conflict. Now let's delete everything in
that file except for the line:

Please refer to the [build instructions](doc/build_instructions.md) for
building this project.

Now let's finish the merge by issuing the following commands:

git add README.md
git commit --no-edit # This keeps the merge commit message

At this point, this is how the commit tree looks:

See how OrxPM created a new “platform” commit with all the packages you requested and merged it
into your repository. Now, if you look around your repository, you'll notice that many files and folders
have appeared. The file tree looks something like this:

REPOROOT
├── android
├── data
│ ├── android
│ │ ├── android_debug.ini
│ │ └── android.ini
│ ├── common
│ │ └── common.ini
│ ├── desktop

https://www.orx-project.org/wiki/_detail/tutorials/community/enobayram/merge_minimal_commit_tree.png?id=en%3Atutorials%3Aprojects%3Aorxhub_user

2025/06/15 13:36 (0 seconds ago) 3/7 This page is deprecated

Orx Learning - https://www.orx-project.org/wiki/

│ │ └── desktop.ini
│ └── game.ini
├── doc
│ └── build_instructions.md
├── orxpm.sh
├── README.md
└── src
 ├── android
 ├── cmake
 ├── CMakeLists.txt
 ├── common
 │ └── main.cpp
 ├── desktop
 ├── lib
 └── orxpm

At this point, the interesting files are:

src/common/main.cpp: This is where the game's `main()` lives. In the minimal package, it
has the bare minimum code to keep the future packages together.
src/CMakeLists.txt: This is the game's build configuration. Most users will probably never
have to modify it.
src/common, src/desktop, src/android: These are platform aware source folders. Every .c
and .cpp file under desktop and common gets compiled and linked to desktop builds (Linux,
Win, Mac) and everything under android and common goes into the Android build. 99-100% of
a game's code should typically live in the common folder.
data/common, data/desktop, data/android: These folders are similar to their counterparts
under the src folder.
data/desktop/desktop.ini: This is the orxConfig entry point for the desktop builds.
data/android/android.ini, data/android/android_debug.ini: These are the Android and
Android debug build orxConfig entry points respectively.
data/common/common.ini: This empty .ini file gets included by all the builds, so it's probably
best place to start building your game, unless you want to do something specific to the
platform.
doc: This is the documentation folder. When you install packages, they put their documentation
in this folder. The minimal package currently only has documentation on how to build this
project, more documentation will likely be added to that package in the future though.

Working with the Project

Now, Let's start hacking :)

The first thing we do is to compile the project as it is now. For that, we need to have a C/C++
compiler installed on our system, as well as the CMake cross-platform build tool. Having these, go the
project root folder and run the following commands:

mkdir .build # You can have multiple build folders
cd .build
cmake ../src -DCMAKE_BUILD_TYPE=Debug # Other options are Release and

https://github.com/orx/orxhub/blob/package/minimal/doc/build_instructions.md
https://cmake.org/

Last update: 2024/06/01 12:34 (13
months ago) en:tutorials:projects:orxhub_user https://www.orx-project.org/wiki/en/tutorials/projects/orxhub_user

https://www.orx-project.org/wiki/ Printed on 2025/06/15 13:36 (0 seconds ago)

RelWithDebInfo

CMake has many many options on how to configure your project. The commands above will create the
most basic project files for your platform and build tools. You can make it generate project files for
IDEs like Eclipse or CodeLite, but those things are out of scope for this tutorial. Since this tutorial is
meant to be platform-independent, I'll leave it to you to figure out how to perform the compilation. On
Windows you'll typically have solution files that you can open in MSVC, or a Makefile if you have
MinGW. On Linux, you'll typically get a Makefile, and on Mac, you'll probably get XCode project files.
From this point on, I'll assume that you've figured out how to compile the project.

I won't go into the details, but imagine that we create the familiar running soldier object from the
official Orx Anim Tutorial. We then assign it a timeline track so that it endlessly patrols to the left and
right. Here's what we change in the project files:

data/common/common.ini

[MainViewport]
Camera = Camera

[Camera]
... ; Please see the "what we change in the project files" link above for
details

[Input]
...

@soldier.ini@

data/common/soldier.ini

[Soldier]
AnimationSet = AnimSet
TrackList = PatrolTrack
...

[PatrolTrack]
Loop = true
0 = Object.SetAnim ^ WalkRight # Object.AddFX ^ MoveRightFX
4 = Object.SetAnim ^ IdleRight
6 = Object.SetAnim ^ WalkLeft # Object.AddFX ^ MoveLeftFX
10 = Object.SetAnim ^ IdleLeft
12 = Object.SetAnim ^ IdleLeft

[AnimSet]
AnimationList = IdleRight#WalkRight#IdleLeft#WalkLeft
LinkList = IdleRightLoop # IdleRight2Left # IdleRight2WalkRight #
 WalkRightLoop # WalkRight2IdleRight # IdleLeftLoop #
 IdleLeft2Right # IdleLeft2WalkLeft # WalkLeftLoop #

https://www.orx-project.org/wiki/en/tutorials/animation/anim
https://www.orx-project.org/wiki/en/orx/config/settings_structure/orxtimelinetrack
https://github.com/enobayram/using_orxhub_tutorial/commit/ebb56441aa5c60ba82c487515f1003874e3c6e80

2025/06/15 13:36 (0 seconds ago) 5/7 This page is deprecated

Orx Learning - https://www.orx-project.org/wiki/

 WalkLeft2IdleLeft

... ; Frame, Animation and LinkList sections follow

data/common/soldier.png

src/common/main.cpp:

In the Init() function

orxViewport_CreateFromConfig("MainViewport");
orxObject_CreateFromConfig("Soldier");

In the Run() function

if(orxInput_IsActive("Quit")) return orxSTATUS_FAILURE;

Now if you compile and run the project here's what you'll see:

Let's commit the project now:

cd <repo root dir>
git add data/common/* src/common/main.cpp
git commit -m "Added a patrolling soldier"

Installing New Packages

At this point, we learn that there's an orxhub package called animgraph that simplifies the definition
of AnimationSets and decide to take advantage of it. Here's what we do; we first make sure that
there are no uncommitted changes in the repository by issuing git status. It should say nothing
to commit, working directory clean. Then we perform the following:

https://www.orx-project.org/wiki/_detail/tutorials/community/enobayram/soldier_full.png?id=en%3Atutorials%3Aprojects%3Aorxhub_user
https://www.orx-project.org/wiki/_detail/tutorials/community/enobayram/patrol.gif?id=en%3Atutorials%3Aprojects%3Aorxhub_user

Last update: 2024/06/01 12:34 (13
months ago) en:tutorials:projects:orxhub_user https://www.orx-project.org/wiki/en/tutorials/projects/orxhub_user

https://www.orx-project.org/wiki/ Printed on 2025/06/15 13:36 (0 seconds ago)

cd REPOROOT
echo animgraph >> orx_packages
./orxpm.sh

OrxPM will then merge the changes caused by added and removed(we haven't removed any but we
could have) packages into our repository. Here's what our commit graph now looks like:

Note how OrxPM created a new commit with the required changes and merged it in. At this point, we
have all the new packages we've requested downloaded, along with their dependencies and
integrated into our game. For instance, the animgraph package registers a few orxCommands, and
that's already handled for us, and we can start using them in Config right away!

Using the animgraph Package

Notice how the animgraph package brought a few files under the doc/ folder. Some of those files
have come from its dependencies, but the animgraph package itself is documented in the
animgraph.md file. To understand what we're doing next, please quickly skim that file. We're now
going to shorten our soldier.ini:

[AnimSet]
IR = IdleRight
IL = IdleLeft
WR = WalkRight
WL = WalkLeft
AnimationGraph = IR # IL # WR # WL # IR! : IL,WR : !IR # IL : !WL! : IL
%ConfigX.ProcessAnimGraph AnimSet

... ; all the link sections removed

[PatrolTrack] ; Notive how we've changed the SetAnim calls
0 = ObjectX.SetAnimByTag ^ WR # Object.AddFX ^ MoveRightFX
4 = ObjectX.SetAnimByTag ^ IR
6 = ObjectX.SetAnimByTag ^ WL # Object.AddFX ^ MoveLeftFX
10 = ObjectX.SetAnimByTag ^ IL
12 = ObjectX.SetAnimByTag ^ IL

Now, if you compile and run the game, you'll see that nothing is changed, but we've shortened
soldier.ini by 41 lines! Important Note: On some platforms, when you try to compile the project
now, the C/C++ linker will complain about some missing function definitions. That's because CMake
hardcodes the name of the .c/.cpp files to be compiled. So, whenever you add/remove .c/.cpp
files (which is often what happens when you fetch packages) either run CMake again manually, or do
the following so that the project runs CMake automatically at the next build:

https://www.orx-project.org/wiki/_detail/tutorials/community/enobayram/commit_graph_after_animgraph.png?id=en%3Atutorials%3Aprojects%3Aorxhub_user
https://github.com/orx/orxhub/blob/package/animgraph/doc/animgraph.md
https://github.com/enobayram/using_orxhub_tutorial/commit/ea173693e9c37b76375747fed5e509aef153cef0

2025/06/15 13:36 (0 seconds ago) 7/7 This page is deprecated

Orx Learning - https://www.orx-project.org/wiki/

touch REPOROOT/CMakeLists.txt

From:
https://www.orx-project.org/wiki/ - Orx Learning

Permanent link:
https://www.orx-project.org/wiki/en/tutorials/projects/orxhub_user

Last update: 2024/06/01 12:34 (13 months ago)

https://www.orx-project.org/wiki/
https://www.orx-project.org/wiki/en/tutorials/projects/orxhub_user

	This page is deprecated
	Using orxhub
	Summary
	Starting a New Project
	Working with the Project
	data/common/common.ini
	data/common/soldier.ini
	data/common/soldier.png
	src/common/main.cpp:

	Installing New Packages
	Using the animgraph Package

