2026/01/12 04:09 (0 seconds ago) 1/9 Hexagon Grid Tutorial

Hexagon Grid Tutorial

Introduction

This tutorial demonstrates how to generate hex grid using shaders and how to track hexagon tiles
based on the screen coordinate (mouse cursor tracking).

The darker hexagon in the left bottom corner of the screenshot above marks the mouse position when
screenshot was taken.

This tutorial builds on concepts developed in Shader Coordinates Tutorial. The enhancement in this
tutorial is about more complicated hexagon grid shader and more complicated internal world
coordinate system in code behind.

NOTE: An updated version of this tutorial, that is based on axial/cubial coordinates, can be found at:
Hexagon Grid Tutorial (Axial/Cubial Coordinates)

Details

Hexagon grid math is based on the article in
http://blog.ruslans.com/2011/02/hexagonal-grid-math.html blog post.

TBD: Tile resource files.

Loading parameter with Orx Config API

The value of hexagon radius is defined in INI file. Code behind needs radius for internal calculations
thus it has to load the value from the INI file. It is done with the help of orxConfig_ XXXX module
functions:

orxConfig PushSection("Shader"
_radius = orxConfig GetFloat("radius"
orxConfig PopSection

The push section call loads or selects the INI file section marked with the name [Shader].

Orx Learning - https://www.orx-project.org/wiki/

https://www.orx-project.org/wiki/_detail/tutorials/community/sergeig/hexagon_grid_tutorial_screenshot.png?id=en%3Atutorials%3Ashaders%3Ahexagongrid
https://www.orx-project.org/wiki/en/tutorials/shaders/shadercoordinates
https://www.orx-project.org/wiki/en/tutorials/shaders/hexagongrid2
http://blog.ruslans.com/2011/02/hexagonal-grid-math.html

Last update:

2025/09/30 17:26 (3 en:tutorials:shaders:hexagongrid https://www.orx-project.org/wiki/en/tutorials/shaders/hexagongrid?rev=1598889115

months ago)

orxConfig PushSection("Shader"

Once the section is selected values inside the section can be accessed with a family of function calls
orxConfig_GetXXXX. In our case we simply load a signed integer value and store it in module scope

variable:

_screenHeight = orxConfig GetS32("radius"

Configuration state is restored to its original value with call to pop section:

orxConfig PopSection

Visualizing Hexagon Parameters

The code uses variable names based on the image below:

S
VAW W=2.R
Vi 3
| IPIl [_]] — g
H AP S = 5 R
d .l ' H=2-R-sin(60°)
- W » — V/E . j?

Source Code

The structure of the source code is similar to the structure of tutorial projects that come with Orx

source code.

INI File HexagonGrid.ini

The content of the file is split into 3 blocks for syntax highlighting reason.

Block 1 - Most of INI content:

;, orx - Tutorial config file
; Should be used with orx v.1.4+

Display

ScreenWidth 800

ScreenHeight 600

Title Hexagon Grid Tutorial
Input

https://www.orx-project.org/wiki/

Printed on 2026/01/12 04:09 (0 seconds ago)

https://www.orx-project.org/wiki/_detail/tutorials/community/sergeig/hex_single-1.png?id=en%3Atutorials%3Ashaders%3Ahexagongrid

2026/01/12 04:09 (0 seconds ago) 3/9 Hexagon Grid Tutorial

SetList = MainInput

MainInput
KEY ESCAPE = Quit

Viewport

Camera Camera
BackgroundColor 210, 180, 140
Camera

;, We use the same size for the camera than our display on screen so as to
obtain a 1:1 ratio

FrustumWidth @isplay.ScreenWidth

FrustumHeight = @Display.ScreenHeight

FrustumFar 1.0

FrustumNear 0.0

Position 0.0, 0.0, -1.0
Object

Graphic OnePixel

Position -400., -300., -0.
Scale 800, 600, 1.

ShaderList Shader

OnePixel
Texture pixel

Shader

ParamList radius # textures # texturesCount # highlight

UseCustomParam = true

textures ../data/hexagonTiles/tile-blue.png # ../data/hexagonTiles/tile-
red.png # ../data/hexagonTiles/tile-green.png # ../data/hexagonTiles/tile-
brown.png # ../data/hexagonTiles/tile-yellow.png

texturesCount 5

radius = 46.66

highlight 0., 1., 0.

Code "

Block 2 - Shader code is in its own code block for syntax highlighting:

bool sameSide(vec3 pl, vec3 p2, vec3 a, vec3 b
vec3 cpl cross(b-a, pl-a
vec3 cp2 cross(b-a, p2-a
dot(cpl, cp2 0.0

bool pointInTriangle(vec3 p, vec3 a, vec3 b, vec3 ¢
sameSide(p,a, b,c
sameSide(p,b, a,c
sameSide(p,c, a,b

Orx Learning - https://www.orx-project.org/wiki/

Last update:
2025/09/30 17:26 (3 en:tutorials:shaders:hexagongrid https://www.orx-project.org/wiki/en/tutorials/shaders/hexagongrid?rev=1598889115
months ago)

vec4 tileColor(vec2 tile, float s, float h
tile.x < 0.0 tile.y < 0.0
vec4(0.0, 0.0, 0.0, 1.0
vecd(tile.x * s, tile.y * h, .7, 1.0); // red

// This one works by producing a nice hexagon greed.
void main

float PI = 3.14159265358979323846264

float r radius

float h = 2.0 r * sin(PI / 3.0); // PI / 3.0 is a 60 degree angle
float s 3. 2. r

vec3 p = gl FragCoord.xyz; // current point

// aproximation or dirty grid coordinates
float gridX = floor(p.x / s
float yOffset = mod(gridX, 2.0)70.5"h
float gridY = floor((p.y - yOffset h
vec3 a vec3(gridX * s, gridY * h yOffset, 0.0); // top left corner
of the top outside triangle
vec3 b = vec3(a.x + 0.5 r, a.y, 0.0); // top right cornerof the top
outside triangle
vec3 ¢ = vec3(a.x, a.y + 0.5 h, 0.0); // bottom point of the top
outside triangle
vec2 tile
vec2 origin; // tile origin point
pointInTriangle(p, a,b,c
// outside top left corner
tile = vec2(gridX - 1., gridY - mod(gridX+1., 2.
origin = vec2(a.x - s, a.y + 0.5 * h

vec3 d = vec3(b.x, (gridY + 1. h + yOffset, 0.0
vec3 e = vec3(a.x, d.y, 0.0
pointInTriangle(p, c,d,e
// outside bottom left corner
tile = vec2(gridX - 1., gridY + mod(gridX, 2.
origin = vec2(c.x - s, c.y + h

// main part or current tile

tile = vec2(gridX, gridY
origin = e.xy

vec2 textCoord vec2(mod(p.x-origin.x, 2.0°r 2. r, mod(p.y
origin.y, h h

int idx = int(mod(tile.x * tile.y, texturesCount

https://www.orx-project.org/wiki/ Printed on 2026/01/12 04:09 (0 seconds ago)

http://www.opengroup.org/onlinepubs/009695399/functions/sin.html
http://www.opengroup.org/onlinepubs/009695399/functions/floor.html
http://www.opengroup.org/onlinepubs/009695399/functions/floor.html

2026/01/12 04:09 (0 seconds ago) 5/9

Hexagon Grid Tutorial

vecd color = texture2D(textures|idx], textCoord);

it (highlight.xy == tile) {
// shade the pixel
color = mix(color, vec4(.0, .0, .1, 1.),
}
if (tile.x == -1. || tile.y == -1.)
discard;
else
gl FragColor = color;

Block 3 contains the end of INI file:

C File HexagonGrid.c

~
*

Orx - Portable Game Engine

Copyright (c) 2008-2010 Orx-Project

arising from the use of this software.

freely, subject to the following restrictions:

* X X ¥ Q ¥ ¥ ¥ X ¥ QO ¥ ¥ ¥ X X %X % * * * X *x

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it

1. The origin of this software must not be misrepresented; you must

not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must

not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.

*/
/**

@file 13 Shader.c
@date 05/07/2013
@author Sergei G

X ¥ X ¥ %X

Mouse tracking and shader.

Orx Learning - https://www.orx-project.org/wiki/

Last update:
2025/09/30 17:26 (3 en:tutorials:shaders:hexagongrid https://www.orx-project.org/wiki/en/tutorials/shaders/hexagongrid?rev=1598889115
months ago)

*/

#include "orx.h"

/* This is a basic C tutorial creating a viewport and an object.

*

* As orx is data driven, here we just write 2 lines of code to create a
viewport

* and an object. All their properties are defined in the config file

(01 Object.ini).

* As a matter of fact, the viewport is associated with a camera implicitly
created from the

* info given in the config file. You can also set their sizes, positions,
the object colors,

* scales, rotations, animations, physical properties, and so on. You can
even request

* random values for these without having to add a single line of code.

* In a later tutorial we'll see how to generate your whole scene (all
background

* and landscape objects for example) with a simple for loop written in 3
lines of code.

*k

* For now, you can try to uncomment some of the lines of 01 Object.ini,
play with them,

* then relaunch this tutorial. For an exhaustive list of options, please
look at CreationTemplate.ini.

*/

orxFLOAT screenHeight;

orxVECTOR texCoord;

orxFLOAT radius; // tile radius in screen coordinates, i.e. pixels
orxVECTOR tilePos; // tile position index

#pragma mark - hexagon math

orxBOOL sameSide(orxVECTOR *“pl, orxVECTOR *p2, orxVECTOR *a, orxVECTOR *b) {
orxVECTOR b _a, pl a, p2 a, cpl, cp2;
orxVector Sub(&b a, b, a);
orxVector Sub(&pl a, pl, a);
orxVector Sub(&p2 a, p2, a);
orxVector Cross(&cpl, &b a, &pl a);
orxVector Cross(&cp2, &b a, &4p2 a);
return orxVector Dot(&cpl, &cp2) == 0.0;
}

orxBOOL pointInTriangle(orxVECTOR *p, orxVECTOR *a, orxVECTOR *“b, orxVECTOR
*c) {
return sameSide(p,a, b,c) && sameSide(p,b, a,c) && sameSide(p,c, a,b);

https://www.orx-project.org/wiki/ Printed on 2026/01/12 04:09 (0 seconds ago)

2026/01/12 04:09 (0 seconds ago) 7/9 Hexagon Grid Tutorial

orxFLOAT mod(orxFLOAT x, orxFLOAT y
X -y floor(x/y

// This one works by producing a nice hexagon greed.

// r 1s radius

// p 1s current pixel coordinate to process

orxVECTOR* tileFromScreen(orxFLOAT r, orxVECTOR “point, orxVECTOR *tile

orxVECTOR p
orxVector Copy(&p, point

orxFLOAT PI = 3.14159265358979323846264
orxFLOAT h = 2.0 r * sin(PI / 3.0); // PI / 3.0 is a 60 degree angle
orxFLOAT s 3. 2. r

// aproximation or dirty grid coordinates

orxFLOAT gridX = floor(p.fX / s

orxFLOAT yOffset = mod(gridX, 2.0)70.5"h

orxFLOAT gridY = floor((p.fY - yOffset h

orxVECTOR a, b, c

orxVector Set(ta, gridX * s, gridY * h + yOffset, 0.0); // top left
corner of the top outside triangle

orxVector Set(&b, a.fX + 0.5 r, a.fyY, 0.0); // top right cornerof the
top outside triangle

orxVector Set(&c, a.fX, a.fyY + 0.5 * h, 0.0); // bottom point of the top
outside triangle

pointInTriangle(&p, &a,db,&c
// outside top left corner
orxVector Set(tile, gridX 1., gridY - mod(gridX+1l., 2. 0.0

orxVECTOR d, e
orxVector Set(&d, b.fX, (gridY + 1. h + yOffset, 0.0
orxVector Set(te, a.fX, d.fY, 0.0

pointInTriangle(&p, &c,id, e

// outside bottom left corner

orxVector Set(tile, gridX - 1., gridY + mod(gridX, 2. 0.0

// main part or current tile
orxVector Set(tile, gridX, gridY, 0.0

tile

#pragma mark - orx

static orxSTATUS orxFASTCALL handleShaderEvent(const orxEVENT *currentEvent

Orx Learning - https://www.orx-project.org/wiki/

http://www.opengroup.org/onlinepubs/009695399/functions/floor.html
http://www.opengroup.org/onlinepubs/009695399/functions/sin.html
http://www.opengroup.org/onlinepubs/009695399/functions/floor.html
http://www.opengroup.org/onlinepubs/009695399/functions/floor.html

Last update:
2025/09/30 17:26 (3 en:tutorials:shaders:hexagongrid https://www.orx-project.org/wiki/en/tutorials/shaders/hexagongrid?rev=1598889115
months ago)

currentEvent->elID
orxSHADER EVENT SET PARAM
/* Gets its payload */
orxSHADER EVENT PAYLOAD *pstPayload orxSHADER EVENT PAYLOAD
currentEvent->pstPayload

/* look for parameter of interest */
orxString Compare(pstPayload->zParamName, "highlight"
orxVector Copy(&pstPayload->vValue, & tilePos

orxSTATUS SUCCESS

/** Inits the tutorial
)
orxSTATUS orxFASTCALL Init

/* Displays a small hint in console */
orxLOG("\n* This tutorial creates a viewport/camera couple and an object
with shader"
“\n* You can play with the config parameters in
. ./14 HexagonGrid.ini"
"“\n* After changing them, relaunch the tutorial to see their
effects"

orxFLOAT screenWidth
orxDisplay GetScreenSize(&screenWidth, & screenHeight

orxConfig PushSection("Shader"
_radius = orxConfig GetFloat("radius"
orxConfig PopSection

orxViewport CreateFromConfig("Viewport"

orxObject CreateFromConfig("Object"

orxEvent AddHandler(orxEVENT TYPE SHADER, handleShaderEvent
orxSTATUS SUCCESS

/** Run function
/)
orxSTATUS orxFASTCALL Run
orxSTATUS eResult = orxSTATUS SUCCESS

/* Should quit? */
orxInput IsActive("Quit"

/* Updates result */

https://www.orx-project.org/wiki/ Printed on 2026/01/12 04:09 (0 seconds ago)

2026/01/12 04:09 (0 seconds ago) 9/9 Hexagon Grid Tutorial

eResult orxSTATUS FAILURE

/* stores current mouse position */

orxVECTOR mouse

orxMouse GetPosition(&mouse

_texCoord.fX = mouse.fX

_texCoord.fY = screenHeight - mouse.fY

_texCoord.fZ

// calculate tile position for the mouse position

orxVECTOR oldTilePos

orxVector Copy(&oldTilePos, & tilePos

tileFromScreen(radius, & texCoord, & tilePos
oldTilePos. fX _tilePos.fX oldTilePos.fY _tilePos.fY
//orxLOG("tile: S%f, %f for shader: %f, %f.", tilePos. fX,

_tilePos.fY, texCoord.fX, texCoord.fY);

/* Done! */
eResult

/** Exit function
/)
void orxFASTCALL Exit

/* We're a bit lazy here so we let orx clean all our mess! :) */

/** Main function
*/
int main(int argc, char **argv

/* Executes a new instance of tutorial */
orx Execute(argc, argv, Init, Run, Exit

EXIT_SUCCESS

From:
https://www.orx-project.org/wiki/ - Orx Learning

Permanent link:
https://www.orx-project.org/wiki/en/tutorials/shaders/hexagongrid?rev=1598889115

Last update: 2025/09/30 17:26 (3 months ago)

Orx Learning - https://www.orx-project.org/wiki/

https://www.orx-project.org/wiki/
https://www.orx-project.org/wiki/en/tutorials/shaders/hexagongrid?rev=1598889115

	Hexagon Grid Tutorial
	Introduction
	Details
	Loading parameter with Orx Config API
	Visualizing Hexagon Parameters

	Source Code
	INI File HexagonGrid.ini
	C File HexagonGrid.c

