2026/01/12 00:00 (0 seconds ago) 1/3

Object Traversing

Object Traversing

Imagine you have this INI file (not everything is shown in it):

Scene
ChildList Terrain # Tank # Enemies

Terrain

Graphic @
Texture grass.png
Tank

Graphic = @

Texture = tank.png
GSide player

Enemies
ChildList Turretl # Turret2

Turretl

Graphic = TurretTexture
GSide = enemy

Turret2

Graphic = TurretTexture
GSide enemy

Then in your code you load scene object as a whole:
orxSTATUS orxFASTCALL Init

orxViewport CreateFromConfig("Viewport"
_scene = orxObject CreateFromConfig("Scene"

In the code above you rely on orx to traverse the object tree and create it appropriately. However, in
our INI file we have added a new key GSide with values “player” and “enemy”. GSide stands for game
side. Our game code needs to initialize its internal data state according to the value of the GSide.
Some objects may not have GSide key at all. Traversing INI file with config calls is possible, but it is

not simple.

You can traverse [Scene] object child tree with the following recursive function:

void InitObject(orxOBJECT *obj
orxLOG("%s: name", orxObject GetName(obj

typedef void (*ObjectHandler) (orxOBJECT “obj

Orx Learning - https://www.orx-project.org/wiki/



Last update: 2025/09/30 17:26 (3 months

ago) en:tutorials:objecttreetraversing https://www.orx-project.org/wiki/en/tutorials/objecttreetraversing

void traverseScene(orxOBJECT *“child, ObjectHandler objHandler
orx0OBJECT *sibling
child = orxObject GetOwnedChild(child
objHandler(child
sibling child
sibling = orxObject GetOwnedSibling(sibling
objHandler(sibling
traverseScene(sibling, objHandler

This code traverses through all of the [Scene] children, including their children and so on.

In the code above the specific functionality to handling of the object is delegated to InitObject
function. Put your custom logic into it and you are done.

“larwain" has made a few points to keep in mind

e This will not traverse any objects that are not connected to scene hierarchy
* Objects that have been created as part of the Scene hierarchy can decide to exclude

themselves from that hierarchy at any point (usually done for permanent objects, Ul objects,
etc...)

¢ You might want to look at Scroll, which is a thin C++ layer on top of orx.

Orx does bookkeeping on all the orxSTRUCTURE derivative that are created, if you want to iterate
through all the orxOBJECTS, you can do so like this:

orxOBJECT *pstObject
orxOBJECT (orxStructure GetFirst(orxSTRUCTURE ID OBJECT

pstObject orxNULL
pstObject = orxOBJECT(orxStructure GetNext(pstObject

Alternative to Traversing when Loading from Config
A better approach would be to attach your data when your object is created, by listening to the
orxOBJECT_EVENT_CREATE event.

Another alternative is to use scroll C++ wrapper as it takes care of orxOBJECT_EVENT _CREATE with its
binding mechanism and other tasks.

See also

Get OrxObject by Traversing Structures

https://www.orx-project.org/wiki/ Printed on 2026/01/12 00:00 (0 seconds ago)


https://github.com/orx/scroll
https://www.orx-project.org/wiki/en/examples/objects/get_object_by_traversing_structures

2026/01/12 00:00 (0 seconds ago) 3/3 Object Traversing

From:
https://www.orx-project.org/wiki/ - Orx Learning

Permanent link:
https://www.orx-project.org/wiki/en/tutorials/objecttreetraversing

Last update: 2025/09/30 17:26 (3 months ago)

Orx Learning - https://www.orx-project.org/wiki/


https://www.orx-project.org/wiki/
https://www.orx-project.org/wiki/en/tutorials/objecttreetraversing

	Object Traversing
	"iarwain" has made a few points to keep in mind
	Alternative to Traversing when Loading from Config
	See also


