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orxSHADER structure

Summary

[ShaderTemplate]
Code = "// Shader code
  void main()
  {
   // Do stuff
  }"
KeepInCache    = <bool>
ParamList      = ParamFloat # ParamTexture # ParamVector
ParamFloat     = <float>
ParamVector    = <vector>
ParamTexture   = path/to/TextureFile|screen
UseCustomParam = <bool>

Details

Here's a list of the available properties for an orxSHADER structure:

Code: This block 1) contains the code that will be executed. It needs to be provided and be valid
GLSL fragment shader code.

KeepInCache: Defines if the shader code should be kept in memory even if no shader of this
type is currently in use. This saves time (reading from disk + compiling) but costs memory. Its
default value is false.
ParamList: This defines the list of parameters needed and used by the shader's code. Every
defined parameter must have a default value that will help orx guess their type. If none is
provided, then its type will be assumed to be a texture. Available types are <float>, <vector>
and texture (if a path to a texture file or the keyword screen is provided). If an invalid path is
provided for a parameter, or the parameter isn't defined at all, the owner's texture will be used
2). If an explicit list is provided for any parameter, the shader variable will be an array
of this parameter type (instead of a regular variable) and its size will be the number
of items in the list.
UseCustomParam: Defines if parameters can have their value overridden at runtime (ie.
interactive). Its default value is false which means only the default values will be used.

Here's a simple example of a non-interactive shader as seen in the spawner/shader tutorial.

[Decompose]
Code = "void main()
{
  float fRed, fGreen, fBlue;
 
  // Computes positions with offsets
  vec2 vRedPos    = vec2(gl_TexCoord[0].x + offset.x, gl_TexCoord[0].y +
offset.y);
  vec2 vGreenPos  = vec2(gl_TexCoord[0].x, gl_TexCoord[0].y);

https://en.wikipedia.org/wiki/glsl
https://en.wikipedia.org/wiki/glsl
https://www.orx-project.org/wiki/en/orx/tutorials/spawner
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  vec2 vBluePos   = vec2(gl_TexCoord[0].x - offset.x, gl_TexCoord[0].y -
offset.y);
 
  // Red pixel inside texture?
  if((vRedPos.x >= 0.0) && (vRedPos.x <= 1.0) && (vRedPos.y >= 0.0) &&
(vRedPos.y <= 1.0))
  {
    // Gets its value
    fRed = texture2D(texture, vRedPos).r;
  }
 
  // Green  pixel inside texture?
  if((vGreenPos.x >= 0.0) && (vGreenPos.x <= 1.0) && (vGreenPos.y >= 0.0) &&
(vGreenPos.y <= 1.0))
  {
    // Gets its value
    fGreen = texture2D(texture, vGreenPos).g;
  }
 
  // Blue pixel inside texture?
  if((vBluePos.x >= 0.0) && (vBluePos.x <= 1.0) && (vBluePos.y >= 0.0) &&
(vBluePos.y <= 1.0))
  {
    // Gets its value
    fBlue = texture2D(texture, vBluePos).b;
  }
 
  // Outputs the final decomposed pixel
  gl_FragColor = vec4(fRed, fGreen, fBlue, 1.0);
}"
ParamList = texture # offset
offset    = (-0.05, -0.05, 0.0) ~ (0.05, 0.05, 0.0); <= Let's take some
random offset

Please see the spawner/shader tutorial for more information.

Overriding Parameters at Runtime with UseCustomParam

Shader parameters can be defined on the fly if

UseCustomParam = true

is set in your shader. An event of type orxEVENT_TYPE_SHADER and ID
orxSHADER_EVENT_SET_PARAM will be fired for all parameters and its payload will contain the name
of the param and its default value. Event handler can then modify that value if need be, and it'll get
used by the shader.

https://www.orx-project.org/wiki/en/orx/tutorials/spawner
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However, when UseCustomParam is defined, those objects can't be batched at rendering. So it might
be a bit more expensive. The severity of the processing penalty depends on how many objects are in
the scene. See test playgroung code, orxBounce, for an example on how to set those shader
parameters on the fly.

Shader Execution Environment

Specifying an Empty Texture

There is an internal texture called pixel. It can be used to specify an image of arbitrary size when
used with the Scale key of the object:

[Object]
Graphic = MyTexture
Scale = (16, 16, 1)

[MyTexture]
Texture = pixel

In the example above an empty 16×16 pixels texture is created.

This technique can be useful in some types of shaders.

Coordinate System

Shader receives original owner's texture coordinates. For example:

[GameObject]
Graphic = @
Texture = ObjectTexture.png
TextureCorner = (16, 16, 0)
TextureSize = (8, 8, 0)
ShaderList = Shader
 
[Shader]
ParamList = myTexture # ...
Code = ...

Then orx will generate extra parameters behind the scene for the texture. The names follow the
pattern:

<NameOfYourTexture>_top, <NameOfYourTexture>_right,
<NameOfYourTexture>_bottom, <NameOfYourTexture>_left

In the example above the names will be:

myTexture_top, myTexture_right, myTexture_bottom, myTexture_left
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Let's say myTexture is 32×32, we'd then get:

myTexture_left = 16 out of 32 => 0.5
myTexture_top = 32 - 16 out of 32 => 0.5
myTexture_right = 16 + 8 out of 32 => 0.75
myTexture_bottom = 32 - (16 + 8) out of 32 => 0.25 (it has been inverted for
you as you can see, same for _top, but in this example it doesn't show)

1)

delimited by double quotes (“) as seen in the syntax page
2)

if the owner is a viewport, it will be its associated texture; if it's an object, it's current
graphic/animation key's texture will be used
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